Microbiome: Metagenomics

4/4/2018
…metagenomics is an extension of many things you have already learned!

Genomics used to be computationally difficult, and now that’s’s metagenomics!
 ○ Still developing tools/algorithms for data analysis (especially assembly and mapping!)
Why Sequencing?

Microbes are often difficult to culture
 ○ (Ideally) Can study all microbes, not just those you can culture

Want to understand the structure and function of microbial communities

It has become (relatively) cheap
(Randomly Sampled, Anonymous) Untargeted Genetic Material

Shotgun Metagenomics

“Beyond” (Entire Community)
Recover **whole genome** sequences of all microbial community members, not just selected organisms or single marker genes

- “All” == above a certain threshold (where the threshold depends on coverage/depth and the microbe’s abundance in the sample)

Can perform **large-scale** investigations of **complex** microbial communities

- **Structure**: Taxonomic composition (who’s there?)
- **Function**: Metabolic potential (what can they do?)
Microbiome

- Bacteria
- Archaea
- Fungi
- Viruses

Metagenomic/Whole Genome Shotgun Sequencing

16S rRNA Sequencing

18S rRNA Sequencing
Shotgun metagenomics yield species-level information

- Closely-related species have a high sequence similarity
 - Similar issue to 16S sequencing
Sample → Shotgun Metagenomic Sequencing → Taxonomic Classification, Population Analysis, Functional Analysis

Who's there?

What can they do?
16S rRNA sequencing helps us understand get a better understanding of community **structure**...

...but metagenomics gives us a better understanding of the metabolic **potential** of a community (“function”)...

...and next we need to focus on what the metabolic **activity** of a community (function)!
Shotgun Metagenomics Sequencing
Bioinformatics
Metagenomics Workflow
Things to Keep in Mind

Sequencing platform
 ○ Error rate, biases, read length, noise

Choice of variable region(s)

(Amplification process)
 ○ Error rate, biases, choice of primer, DNA template concentration, PCR cycle number, introduction of chimeras

Coverage/Depth
Sample Collection

Sample collection and preservation should be standardized → Avoid systematic biases

- Can be difficult if samples are collected by different research groups
- Time in frozen storage may vary in longitudinal studies
Need to ensure that the DNA extraction methodology is stringent enough to extract DNA for all cell types in the sample → Avoid bias

○ Should be effective for diverse microbial taxa → otherwise biased for easy-to-lyse microbes
○ Vigorous extraction techniques can result in shortened DNA fragments → can contribute to DNA loss

Note: All extracted DNA is randomly sheared into desired fragment sizes

1. Collection, processing, and sequencing of the samples
Very small amounts of DNA are (usually) sufficient for sequencing

- Any contamination can overwhelm the “real” signal → need to be as sterile as possible
- Should include a “blank” as a sequencing control

Need to ensure that there is sufficient microbial biomass for sequencing

- There are many enrichment methods available (if needed) → often introduce their own biases

1. Collection, processing, and sequencing of the samples
Whole-Genome Amplification

Advantages

Generates sufficient DNA for sequencing
 - Even from tiny amounts of starting material

Can be applied directly to extracted environmental DNA

Can amplify DNA from the whole range of species present within a given sample

Limitations

Can introduce significant biases
 - Can skew resulting metagenomics profiles

Chimeric molecules can form
 - Can confound assembly

Is unlikely to improve proportional abundance of DNA from a species of interest

1. Collection, processing, and sequencing of the samples
2. Preprocessing of the sequencing reads

Preprocessing

Quality Assessment & Trimming

- Remove adapters, low-quality bases, PCR primers (if used)
- Demultiplex using barcodes, discard reads without a barcode
- Filter out “foreign” DNA (e.g. human)

Tools: FastQC, Trimmomatic, Picard
Assembly: Putting short sequences together to reconstruct a longer, source sequence

Mapping: Locating where one short sequence is found in a longer sequence

Binning: Identifying the “owner” of each anonymous DNA fragment → Classification of DNA sequences/reads/contigs
Next-Gen Sequencing yields a large volume of data (FastQ files) in the form of short reads

Can either **assemble** the reads into **contigs**

OR

Can **map** the reads to reference databases

3. Sequence analysis to profile taxonomic, functional, and genomic features of the microbiome
Sequence Analysis

<table>
<thead>
<tr>
<th></th>
<th>Assembly-Based</th>
<th>Read-Based (Mapping)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Comprehensiveness</td>
<td>Can construct multiple whole genomes, but only for organisms with enough coverage to be assembled and binned.</td>
<td>Can provide an aggregate picture of community function or structure, but is based only on the fraction of reads that map effectively to reference databases.</td>
</tr>
<tr>
<td>Community Complexity</td>
<td>In complex communities, only a fraction of the genomes can be resolved by assembly.</td>
<td>Can deal with communities of arbitrary complexity given sufficient sequencing depth and satisfactory reference database coverage</td>
</tr>
<tr>
<td>Novelty</td>
<td>Can resolve genomes of entirely novel organisms with no sequenced relatives.</td>
<td>Cannot resolve organisms for which genomes of close relatives are unknown.</td>
</tr>
<tr>
<td>Computational Burden</td>
<td>Requires computationally costly assembly, mapping, and binning.</td>
<td>Can be performed efficiently, enabling large meta-analyses.</td>
</tr>
</tbody>
</table>

3. Sequence analysis to profile taxonomic, functional, and genomic features of the microbiome

<table>
<thead>
<tr>
<th>Assembly-Based</th>
<th>Read-Based (Mapping)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Genome-Resolved Metabolism</td>
<td>Can link metabolism to phylogeny through completely assembled genomes, even for novel diversity. Can typically resolve only the aggregate metabolism of the community, and links with phylogeny are only possible in the context of known reference genomes.</td>
</tr>
<tr>
<td>Expert Manual Supervision</td>
<td>Manual curation required for accurate binning and scaffolding and for misassembly detection. Usually does not require manual curation, but selection of reference genomes to use could involve human supervision.</td>
</tr>
<tr>
<td>Integration with Microbial Genomics</td>
<td>Assemblies can be fed into microbial genomic pipelines designed for analysis of genomes from pure cultured isolates. Obtained profiles cannot be directly put into the context of genomes derived from pure cultured isolates.</td>
</tr>
</tbody>
</table>

We can put together a picture of the community profile like a puzzle (or a set of puzzles with the pieces all mixed together)

- We can use a reference genome or we can perform assembly \textit{de novo}

Similar to whole-genome assembly
Assembly

<table>
<thead>
<tr>
<th>De Novo</th>
<th>Guided (Reference)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Does not require reference genomes</td>
<td>Requires reference genomes</td>
</tr>
<tr>
<td>Uses graph theory algorithms to assemble sequencing reads into contigs</td>
<td>Maps sequencing reads onto reference genomes to construct contigs joined in silico from individual reads</td>
</tr>
<tr>
<td>Computationally demanding</td>
<td>Limited by the quality and availability of reference genomes</td>
</tr>
</tbody>
</table>

3. Sequence analysis to profile taxonomic, functional, and genomic features of the microbiome
Assembly: de novo

Break each sequencing read into overlapping subsequences of a fixed length k ($k = 7$)

Assembler finds the path through the graph that reconstructs the genome(s)

Set of overlapping “k-mers” define the vertices and edges of the graph

Repetitive regions make it difficult to resolve the original sequence

3. Sequence analysis to profile taxonomic, functional, and genomic features of the microbiome
Assembly: Guided (Reference)

Align reads to a (database) of reference genomes

○ Similarity scores
○ Sometimes only a minority of reads can be aligned
Contigs: Contiguous DNA sequences assembles from shorter, overlapping sequencing reads

- **N50:** Weighted median contig size (metric) → Higher N50 may mean more mis-assemblies (metric was designed for single-genome assembly)
 - size to x Mbp, number to x Mbp

Scaffold: Merged contigs

MAG: Metanomic Assembled Genome
Communities are more biologically complex than individual microbes:

○ Reads come from multiple species → Are near-identical/identical reads/configs from 1 or more species?

The presence of different strains of the same species can result in fragmented reconstructions.

Some DNA segments are repeated within the same organism, or shared between distinct organisms.
Assembly: Unique Challenges

When assembling a single genome, we typically assume that sequence coverage is *approximately uniform* across the genome

- Find repeat copies
- Distinguish sequencing errors from the “real” sequence
- Identify allelic variation

...but the coverage of each community member depends on the **abundance** of its genome in the community
So if the coverage of each community member depends on its abundance...

...then low-abundance genomes may end of fragmented/incomplete

Coverage/Depth will determine how well you can characterize low-abundance community members

(Need “enough” overlapping reads)

Trade-off between:

○ Recovering low-abundance genomes

○ Obtaining long, accurate contigs for high-abundance genomes
Binning

We don’t have prior knowledge about what species (or even how many) are in a sample...

...and we also don’t have prior knowledge about which contig derives from which genome...

...so we need to group contigs (bin)
Binning

Can cluster based on similarity to a reference database or *de novo* (compared to each other)

- Can also cluster *de novo* and then use a database

Supervised: Use databases to label contigs into taxonomic classes

- Requires reference genomes...but many species are not sequenced

Unsupervised: Cluster contigs based on similarity

→ Both methods use a similarity metric

3. Sequence analysis to profile taxonomic, functional, and genomic features of the microbiome
16S rRNA Sequencing:
Cutoffs: What percent sequence identify should you use?
→ Will depend on the error rate, etc.
Binning

Composition-Based (Unsupervised)
- Does not require reference genomes
- Cluster by contig sequence composition
 - *k*-mer (usually tetramer, \(k = 4 \))
 - frequencies
 - GC content
- Performs poorly on short reads

Homology-Based (Supervised)
- Requires reference genomes
- Cluster by gene homology
 - Similarity to known (marker) genes
- Struggles to be discriminative when there are closely-related species

3. Sequence analysis to profile taxonomic, functional, and genomic features of the microbiome
Once contigs are binned, you can assemble them again into scaffolds/MAGs

- Assess completeness by examining if single-copy core genes (e.g. tRNA synthetases, ribosomal proteins) are present

Note: Binning used to occur on raw reads
Taxonomic Profiling: Map reads to reference genomes

Metabolic Profiling: Map reads to annotated genes/proteins/pathways

→ Get “mixed bag”/“enzyme soup”
Mapping after Binning

Taxonomic Profiling: Map reads contigs/scaffolds to reference genomes

Metabolic Profiling: Map reads contigs/scaffolds to annotated genes/proteins/pathways

→ Know which contig/scaffold/species contains which genes/proteins/pathways
3. Sequence analysis to profile taxonomic, functional, and genomic features of the microbiome
Sequence analysis to profile taxonomic, functional, and genomic features of the microbiome.

Sequence Analysis: Challenges

The main limiting factor in profiling the metabolic potential is the lack of annotations

- Biased towards highly conserved pathways and housekeeping functions → may explain why function is consistent across different samples and environments even when taxonomy varies
Lecture 8: Biological Data Formats

- Genes (gff)
- Contigs (fasta)
- Scaffolds/MAGs (fasta)

Data Matrices (sample vs features)
- Species
- Taxa
- Genes
- Pathways

4. Statistical and biological post-processing analysis
Post-Processing Analysis

Heat maps
 ○ Species/taxa
 ○ Functions/pathways

Clustering

Correlations

Co-occurrence

Phylogeny
Post-Processing Analysis: Challenges

Taxonomic and functional profiles are proportional/compositional

Abundances are (log-normal) long-tailed distributions
Assemblers

Tools: Meta-IDBA, MetaVelvet, IDBA-UD, MetaSPAdes, MEGAHIT, Ray-Meta, SOAPdenovo

- Available memory is usually limiting

What’s best? Depends on biological factors (e.g. underlying community structure) and technical factors (e.g. sequence platform, coverage)

- Try a few and see what is “best”

Assembly result? **Genomes! Contigs!**
Binners/Classifiers: MetaPhlAn, Kraken, Ray-Meta, MetaBAT, CONCOCT, Canopy
Bin Quality Assessment: CheckM
Gene/Functional Analysis: MetaProdigal
Gene/Functional Databases: PFAM, SEED, KEGG, CAZy
Statistical Analysis: HUMAnN2
Pipelines: MG-RAST, MEGAN, IMG/MER, mothur, QIIME

Non-inclusive – there are MANY more tools out there.
Things to Keep in Mind

You are taking a **sample** from a **population**

○ There will be **variation** between samples from the same population

○ Need to ensure that the study has enough statistical **power** to detect differences

Controls can be difficult to obtain

○ Collect as much metadata as possible
 - Clinical Samples: Gender, age, antibiotic/medication use, location, diet, *etc.*
 - Environmental Samples: Location, season, pH, temperature, *etc.*

○ Collect longitudinal data when possible
Technical replicates to assess variability
Blank controls to assess library preparation and sequencing biases/error/contamination
Corrections for confounding factors (e.g. batch effects)

...although uncommon now, will hopefully become common as costs decrease
Metagenomics only looks at the gene sequences that encode proteins or functional RNAs → Tells you what the microbes a functionally capable of (genomic/metabolic potential)

- Need to examine RNA transcripts (metatranscriptomics) and/or translated proteins (metaproteomics) to see what microbes are actually doing
Limitations and Opportunities

Many genes are not annotated → we don’t know what protein they encode

- Our understanding of microbial communities is partial, based on what we can infer from existing knowledge (aka what is well-characterized and in databases)
- Lots of stuff to learn! But we still need to do the (expensive and low-throughput) gene-specific functional studies
Available microbial genomes are biased towards model organisms, pathogens, and easily-cultivable bacteria
 ○ All metagenomics computational tools rely on available genomes (databases), and are therefore affected by the biases in the reference sequence resources
Some reads may be unused even after assembly
 ○ Still don’t know who these microbes are (or if they are just noise)
Are we sequencing the live microbes...or are we sequencing dead or damaged cells?
Quantitative features are normalized (relative abundance)

- Make sure you are using the appropriate statistical/analysis tools for normalized data!
- Can observe false correlations otherwise...

<table>
<thead>
<tr>
<th>Organism 1</th>
<th>Sample 1</th>
<th>Sample 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10</td>
<td>20</td>
</tr>
<tr>
<td>Organism 2</td>
<td>2</td>
<td>2</td>
</tr>
<tr>
<td>Organism 3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Organism 1</th>
<th>Sample 1</th>
<th>Sample 2</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>0.67</td>
<td>0.80</td>
</tr>
<tr>
<td>Organism 2</td>
<td>0.13</td>
<td>0.08</td>
</tr>
<tr>
<td>Organism 3</td>
<td>0.20</td>
<td>0.12</td>
</tr>
</tbody>
</table>
Microbiome Analysis

16S rRNA sequencing: **structure**

Metagenomics: **metabolic potential**

Metatranscriptomics/Metabolomics: **metabolic activity**